HE
18.5 EPORT NO. UMTA-MA-06-0074-81-3

A METHODOLOGY TO ESTIMATE PASSENGER FLOW: RIVERSIDE LINE

MASSACHUSETTS BAY TRANSIT AUTHORITY BOSTON MA

Betty S. Kwok

U.S. DEPARTMENT OF TRANSPORTATION

RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION
Transportation Systems Center
Kendall Square
Cambridge MA 02142

AUGUST 1981
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUELIC
DEPARTMENT OF TRANSPORTATION

THROUGH IHE NATIONAI. TECHNICAL INFORMATION SERVICE. SPRINGFIELD, VIRGINIA 22151

```
Prepared for
U.S. DEPARTMENT OF TRANSPORTATION
URBAN MASS TRANSPORTATION ADMINISTRATION Office of Planning Management and Demonstrations Office of Transportation Management Washington DC 20590
```


notice

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

1. Report No. UMTA-MA-06-0074-81-3	2. Government Accession No.	3. Recipient's Cotolog No.
4. Title and Subtitle A METHODOLOGY TO ESTIMATE PASSENGER FLOW: RIVERSIDE LINE, MASSACHUSETTS BAY TRANSIT AUTHORITY, BOSTON MA		5. Report Dote August 1981
		6. Performing Orgonizotion Code DTS-722
7. Author's)Betty S. Kwok		8. Performing Orgonizotion Report No. DOT-TSC-UMTA-80-46
9. Performing Organizotion Nome ond Address U.S. Department of Transportation Research and Special Programs Administration Transportation Systems Center Kendall Square, Cambridge MA 20142		10. Work Unit No. (TRAIS) UM037/R0721
		11. Controct or Gront No.
12. Sponsoring Agency Nome ond Address U.S. Department of Transportation Urban Mass Transportation Administration Office of Planning Management ξ Demonstration Office of Transportation Management Washington DC 20590		Final Report $1977-1979$
		14. Sponsoring Agency Code UPM-40

15. Supplementary Notes
16. Abstroct This report presents the results and description of a methodology to collect boarding and deboarding passenger data and to estimate for each station along the route an average passenger flow profile by half-hourly time periods. Such profiles can then be fed into a scheduling model which simulates and accommodates passenger congestion at various points in time. It is a culmination of several small scale passenger surveys and a statistical model employing indicator variables and the survey data to estimate the station and time factors for the derivation of average flow rates per minute. Validation of the model was carried out, which strengthened previous findings but indicated a need for modification when the model was applied toward routes that link up heterogenous geographical areas. The results prove that relatively inexpensive sampling techniques can result in acceptable estimates of ridership by route.

17. Key Words Passenger Count, Flowrate, Station Light Rail Vehicl		18. Distribution Statement DOCUMENT IS AVAILABLE TO THE PUBI.IC THRGUGH THE NATIONAL TECHNICAI. INFORMATION SERVICE, SPRINGFIELD. VIAGINIA 22161	
19. Security Clessif. (of this report) Unclassified	20. Security Clossif. (of this poge) Unclassified	$\begin{gathered} \text { 21. No. of Poges } \\ 54 \end{gathered}$	22. Price

1. Repori No. UMTA-MA-06-0074-81-3	2. Gevernment Accession No. PB 82-101825	3. Recipient's Cotolog No.
4. Titlo end Subtitle A METHODOLOGY TO ESTIMATE PASSENGER FLOW: RIVERSIDE LINE, MASSACHUSETTS BAY TRANSIT AUTHORITY, BOSTON, MASSACHUSETTS.		5. Roport DeteAugust 1981
		6. Porforming Orgenization Code DTS-722
		$\begin{aligned} & \text { 8. Performing Orgenizetion Ropori No. } \\ & \text { DOT-TSC-UMTA-80-46 } \end{aligned}$
Betty S. Kwok		
9. Parforming Orgonizotion Name and Address U.S. Department of Transportation Research and Special Programs Administration Transportation Systems Center, Kendall Square Cambridge, Massachusetts 02142		$\begin{aligned} & \text { 10. Work Uni No. (TRA1S) } \\ & \text { MA-06-0074 (UMO37/R0721) } \end{aligned}$
		11. Contreet or Grani No.
		$\begin{aligned} & \text { 13. Trpe of Report ond Poriod Covered } \\ & \text { Final Report } \\ & 1977-1979 \end{aligned}$
12. Sponsoring Agency Nome ond Address U.S. Department of Transportation Urban Mass Transportation Administration 400 Seventh Street, S.W. Washington, DC 20590		
		14. Spanzering Agoney Code UPM-40
15. Supplomentory Notes		
Related reports are: Passenger Flow Analysis, 1978, Riverside Line, MBTA (UMTA-M 06-0074-81-1) and MBTA Passenger Demand Analyses, 1977 (UMTA-MA-06-0074-81-2).		

[^0]17 Koe Wordi
Light Rail Transit; Light Rail Vehicles;
LRV; Massachusetts Bay Transit Authority;
Models and Modeling; Passenger Counts;
Passenger Flow Rate; Passengers; Rider-
ship; Simulation; Surveys
18. Distibutien Eresement

Available to the public through the National Technical Information Service, Springeineld, Virginia 22161
19. Security Classif. (of this report) Unclassified
20. Security Classif. (of this page Unclassified
21. No. of Poges 54
22. Price

A04

PREFACE

The Office of Transportation Management, Urban Mass Transportation Administration (UPM-40) has sponsored this work as part of its distinctive role in an overall program of research, development, and technical assistance to transit management. The particular problem broached is selection of a method of estimating passenger flow rates on routes that are heavily patronized. The resulting figures are needed for schedule planning and for reporting ridership to local, state and federal transportation agencies. These reports may affect funding levels. In congested urban areas, 100 percent counts, one way to secure such information, are expensive and impractical to manage, in addition to being fraught with human errors. Sampling reduces the task to manageable proportions.

The sampling in three successive years was managed by Pacific Consultants, Inc. (1979), H.H. Aerospace Inc. (1978), Boston firms, and Mary Roos of TSC (1977) who served as the project manager. Assistance in data analysis and computer programming was supplied by Wing Gor and Lawrence Jordan, TSC. Most of the work was done under the supervision of Donald Wright, TSC.
metaic conversion factors

table of contents

Section Page

1. INTRODUCTION 1
2. 1979 SURVEY PLANS 4
2.1 Underground Stations 4
2.2 Surface Stations 4
2.3 Survey Data Deficiencies 6
3. SURVEY AND VALIDATION RESULTS -SURFACE STATIONS 10
3.1 Method of Estimation of Average Passenger Flow Rate 10
3.2 Consistency of Passenger Volume Estimates- Surface Stations 23
3.2.1 Consistency of Temporal Dispersion - Surface Stations 23
3.2.2 Average Daily Volume Estimates - Surface Stations 24
3.2.3 Comparison of Market Share Estimates 24
3.3 Conclusion 33
4. VALIDATION FOR UNDERGROUND STATIONS 34
4.1 Station by Station Validation. 40
5. SUMMARY OF SUFFICIENCY OF METHOD 44
5.1 Underground Stations 44
5.2 Surface Stations 44
5.3 General Summary 45
LIST OF ILLUSTRATIONS
Figure Page
2-1. SURVEY PLAN FOR UNDERGROUND STATIONS 5
3-1. GRAPH OF RAN DATA, RIJ, VS. ESTIMATED AVERAGES, RIJ: bOARDING PASSENGERS PER MINUTE (RIVERSIDE TO LECHMERE) 22
3-2. NENTON CENTER: INBOUND BOARDING PROFILE 25

LISt of illustrations (CONTinued)

Figure Page
3-3. INBOUND SMOOTHED SERIES, 1977. 25
3-4. NEWTON CENTER: OUTBOUND DEBOARDING PROFILE, 1979. 26
3-5. OUTBOUND SMOOTHED SERIES, 1977 26
3-6. COMPARISON OF THE 1977 AND 1979 STATION MARKET SHARES (INBOUND TRIPS) 28
4-1. DISTRIBUTION OF THE DETRENDED PASSENGER FLOW RATE, $R_{I J}$, AT UNDERGROUND STATIONS 38
4-2. AUDI TORIUM BOARDING PROFILE (TO RIVERSIDE) 42
4-3. COPLEY BOARDING PROFILE (TO RIVERSIDE) 42
4-4. PARK ST. BOARDING PROFILE (TO RIVERSIDE) 43
4-5. GOVERNMENT CENTER INBOUND BOARDING PROFILE (TO RIVERSIDE) 43
LIST OF TABLES
Table Page
1-1. 1978 OBSERVED PASSENGER BOARDING RATES AT STATIONS: TRAINS GOING TO RIVERSIDE 3
2-1. 1979 SURFACE STATION SAMPLING PLAN (INBOUND) 7
2-2. 1979 SURFACE STATION SAMPLING PLAN (OUTBOUND) 7
3-1. SURFACE STATIONS: BOARDING PASSENGERS PER MINUTE (RIVERSIDE TO LECHMERE) 11
3-2. SURFACE STATIONS: DEBOARDING PASSENGERS PER MINUTE (RIVERSIDE TO LECHMERE) 11
3-3. SURFACE STATIONS: BOARDING PASSENGERS PER MINUTE (LECHMERE TO RIVERSIDE) 12
3-4. SURFACE STATIONS: DEBOARDING PASSENGERS PER MINUTE (LECHMERE TO RIVERSIDE) 12

List of tables (continued)

Table Page
3-5. ANALYSIS OF VARIANCE FOR THE REGRESSION, AND ESTIMATION OF BOARDING RATE FOR ALL LECHMERE TRAINS 14
3-6. ANALYSIS OF VARIANCE FOR THE REGRESSION, AND ESTIMATION OF DEBOARDING RATES FOR LECHMERE TRAINS 16
3-7. ANALYSIS OF VARIANCE FOR THE REGRESSION, AND ESTIMATION OF BOARDING RATES FOR RIVERSIDE TRAINS 18
3-8. ANALYSIS OF VARIANCE FOR THE REGRESSION, AND ESTIMATION OF DEBOARDING RATE FOR ALL RIVERSIDE TRAINS 20
3-9. 1977 MARKET SHARES OF INBOUND BOARDING PASSENGERS 29
3-10. 1977 MARKET SHARES OF OUTBOUND DEBOARDING PASSENGERS 30
3-11. COMPARISON OF MARKET SHARES OF INBOUND BOARDING PASSENGERS 31
3-12. COMPARISON OF MARKET SHARES OF OUTBOUND DEBOARDING PASSENGERS 32
4-1. UNDERGROUND STATIONS - 1979 SURVEY DATA: BOARDING PASSENGERS PER MINUTE (LECHMERE TO RIVERSIDE) 35
4-2. UNDERGROUND STATIONS - 1979 SURVEY DATA: DEBOARDING PASSENGERS PER MINUTE (LECHMERE TO RI VERSIDE 35
4-3. UNDERGROUND STATIONS - 1979 SURVEY DATA: BOARDING PASSENGERS PER MINUTE (RIVERSIDE TO LECHMERE) 36
4-4. UNDERGROUND STATIONS - 1979 SURVEY DATA: DEBOARDING PASSENGERS PER MINUTE (RIVERSIDE TO LECHMERE) 36
4-5. RESIDUALS DEFINED AS $R-\hat{R}=$ (OBSERVED - ESTIMATED) 39

1. INTRODUCTION

The work documented in this report represents part of an endeavor by the Urban Mass Transportation Administration to develop improvements in management techniques to operate local transit sysstems more efficiently and economically. In particular, the ability to accurately ascertain route specific passenger flows or passenger demands has become essential for adequate resource allocation and scheduling of transit runs. This in turn raises the requirement to develop an optimal survey procedure for the estimation of passenger profiles/distributions along the route. In the survey plan and methodology to be adopted and utilized by the local transit properties, the procedure should aim for maximum precision and minimum cost.

When the Light Rail Vehicles (LRVs) were introduced in January 1977 to Boston's Massachusetts Bay Transit Authority (MBTA) to replace the old PCCs on the Green Line extending from the Riverside Station to the Lechmere Station, it was deemed propitious to use this route as the experimental unit in the development of such a prototype passenger profile estimation scheme.

In May 1977, a transit trip survey was conducted along the surface segment of the route. About 67 inbound trips and 69 outbound trips were randomly selected from the daily schedule over a wide spectrum of time periods. The surveyors went aboard the vehicle in the beginning of the trip and obtained counts of boarding and deboarding passengers at each stop along the route. This method allows for the calibration of an average trip profile while at the same time the average trip time, average load, and station dwell time can be derived. A staff paper titled "MBTA Passenger Demand Analyses, 1977" summarizes the findings of the survey.

One year later, another survey was carried out. This time, the surveyors remained at the underground stations and at various selected time periods obtained counts of boarding and deboarding passengers when the LRVs arrived at the station. This new procedure, while it can not give directly a spatial distribution
of passenger demands for the trip, makes possible the derivation of a station profile as it estimates the changing passenger flow rates (passenger counts divided by the headway in minutes) throughout the day. Such information is deemed more useful since rates are independent of the trip orginating time, and thus enhance the flexibility of a scheduling model, the calibration of which is precisely the objective of performing passenger surveys. Another staff paper, "Passenger Flow Analysis, 1978", resulted .

The current work marks the validation phase. For a similar time period in May 1979, two passenger surveys were simultaneously performed (one at the surface stations and the other at the underground stations) through the contracted assistance of the Pacific Consultants, Inc., Boston, Mass. The purpose is two-fold. First, due to the limitation of time and resources, and perhaps to an effort to maximize the economy of data collection, the 1978 underground station survey was designed to leave a number of data gaps to be "filled" by means of a statistical model. Table l-1 should clarify the problem at hand. The estimates that filled these data gaps need to be validated in order to strengthen and justify the survey scheme. Second, for all practical purposes, one survey methodology should be applied to both the surface and underground segments which constitute the entire route. The 1979 work pursues the station count method as developed in 1978 and applies it to the surface stations.

Lechmere
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.00
1.19
3.54
1.87
2.00
1.64
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

 TOTS

 GovernTRAINS GOING TO RIVERSIDE
Copley Arling Boylston Park
ton
 $\begin{array}{llllllllllll}8 & N & M & \exists & M & \infty & 0 & n & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \cdots & \infty & \cdots & 0 & \dot{\sigma} & \dot{0} & \dot{\sigma} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\stackrel{\mid c c c c c c c c c c}{\square}$ $\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right.$

 $\left.\begin{array}{ccccc}8 \\ 0 & \infty & 0 & N & 0 \\ 0 & \sim & - & \sim & n \\ - & - & N & - & -\end{array}\right]$ $\begin{array}{lllll}8 & 8 & 8 & 8 & 8 \\ 0 & 0 & 0 & 0 & 0\end{array}$

 ${ }^{\circ}$ 8
0
0
0 $\begin{array}{ll}0 \\ 0 & 0 \\ 0\end{array}$ 8 8
0
0
0 $\begin{array}{ll}8 & 0 \\ 0 & 0\end{array}$ $\begin{array}{ll}0 \\ 0 & 0 \\ 0\end{array}$ \circ
0

0 | \hat{N} | \cdots | N | \square |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | - | $\begin{array}{ll}8 & 8 \\ 0 & 0 \\ 0 & 0\end{array}$ 0.00 $\begin{array}{llll}8 & 8 & 8 & 8 \\ 0 & 0 & 0 & 0\end{array}$ 0

0
m
m $\begin{array}{cccc}0 & - & 0 & 8 \\ i & - & m & N\end{array}$ $\begin{array}{llllllllllll}0 & 0 & 8 & 8 & 8 & 0 & 8 & 8 & 8 & 8 & 0 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ TABLE 1-1.

Kenmore

Time

700
730
800
830
900
930
1000
1030
1100
1130
1200
1230
1300
1330
1400
1430
1500
1530
1600
1630
1700
1730
1800
1830
1900
1930
2000
2030
응
-8
1130
1200

\circ
$\underset{\sim}{m}$
$\underset{\sim}{\circ}$

 1330
 \(\stackrel{8}{-}\)
 8
 $\underset{\sim}{4} \circ$
\sim
嫘
8
08
0
0
0
1730
$\stackrel{8}{\infty}$
∞
○
8
2030

2. 1979 SURVEY PLANS

2.1 UNDERGROUND STATIONS

The 1979 underground station survey concentrates on those time-station slots left empty by the 1978 survey. Hence, randomness is with respect only to the day of the week and is sacrificed with respect to the choice of station and time periods. This is valid since the purpose is to compare the 1979 survey results with the 1978 estimated statistics. Provisions are also made to compare the 1979 survey results with some of the 1978 survey results. Any significant increase or change in ridership during the year may render the first comparison meaningless in terms of the level (vs. the pattern) of passenger flows. The second comparison is therefore necessary to assess such latent change due to population increase, change in travel behavior, etc. Figure 2-1 displays the 1979 survey plan.

2.2 SURFACE STATIONS

The 1979 surface station survey adheres to the sampling method developed in 1978 for the underground stations. That is, a 13 (hourly periods) x 13 (stations) matrix with 169 cells is set up to be the sampling frame. A sample of cells is then selected systematically with a random start to satisfy the following criteria:
o that the marginal-column totals equal the number of cells selected (i.e., that each surface station is adequately represented in the sample)

- that the peak periods, namely the morning and early afternoon shifts for inbound (Riverside to Lechmere) trains and the morning and late afternoon shifts for outbound (Lechmere to Riverside) trains are emphasized more than the others
- that when a surveyor is assigned to a station-line slot, he/she is able to follow the direction of the train to go to the next station to collect passenger data for the next

Letters denote days of the week.
Numbers denote number of surveyors assigned.
KEY:
FIGURE 2-1. SURVEY PLAN FOR UNDERGROUND STATIONS

> time period. In this way, the surveyor's travel time is minimized and, hence, productivity maximized.

Table 2-1 shows the subsequent selection of 86 cells drawn from the inbound (Riverside to Lechmere) matrix, a 51 percent sample, while Table 2-2 shows the outbound (Lechmere to Riverside) counterpart, a sample of 63 -cells constituting 46 percent of all the cells in the outbound matrix. Because of the relatively simple transit network along the surface segment of the route, this survey requires only four surveyors working eight hours per day for a 5-day week. An example of a surveyor's schedule appears on page 8.

2.3 SURVEY DATA DEFICIENCIES

Before proceeding to describe the survey results, a digression to discuss some grave data deficiencies is necessary. The 1979 survey employed a total of 12 surveyors, 8 for the underground stations and 4 for the surface stations. At the onset, the task was plagued with personnel problems, often resulting in rearrangements of assignments. Not only was the specified survey schedule sometimes forsaken but also the number of surveyors taking counts was inadequate due to unexpected absences and tardiness. For example, at a busy transfer point such as Park Street Station four surveyors were assigned to the peak periods according to the survey plan; however, there was regretfully never a time when all four surveyors were present. Although the absentee always made up his time on another day, accuracy was sacrificed when only one or two surveyors manned the station. The problem was aggravated by a mechanical failure experienced by some LRV cars during the survey week. On May 9,10 , and 13 passengers of the Green Line witnessed extensive delays, sometimes total lack of service, crowded stations and frustrated, turned away patrons. The survey was therefore extended to include the next two weeks. Another extraneous factor which affected the late afternoon passenger counts was that a Red Sox home game was scheduled every night all through the survey period. Thousands of fans poured into Fenway Park and, of course, thronged the Riverside Line.

TABLE 2-1. 1979 SURFACE STATION SAMPLING PLAN (INBOUND)

Time	Riverside	Hood land	liaban	Eliot	High- land	Newton Center	Chest nut Hill	Reser- voit	Beaconsficld	$\begin{aligned} & \text { Brook } \\ & \text { line } \\ & \text { Hills } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Brork }- \\ \text { line } \\ \text { lil } \\ \text { lage } \end{array}$	$\begin{aligned} & \text { Long - } \\ & \text { wood } \end{aligned}$	Fentay
6:30-	F_{4}		F_{3}	${ }^{\mathrm{M}} 1$		K_{1}					H_{2}		
7.8	T_{1}	Hi_{i}			H_{2}	T. 2,3	${ }_{1}$		F_{1}	M_{2}	T_{4}		Th2
8-9		T_{1}	W_{4}	Th_{3}	$\mathrm{F}_{3,4}$	$\mathrm{M}_{1,3}$	$\mathrm{T}_{2,3}$	N_{1}		F_{1}		Γ_{4}	
9-10	F_{2}		T_{1}	w_{4}		F_{3}		r_{2}	W_{2}	Th_{2}	F_{1}		T_{4}
10-11					k_{4}	Th_{3}	F_{3}				Th_{2}	F_{1}	M_{3}
11-12	H_{2}	Th_{1}					Th_{3}	F_{3}				Th_{2}	F_{1}
12-1	T_{3}	K_{2}	Th_{1}	F_{2}	M_{3}			Th_{3}	F_{3}		T_{2}		
1-2		T_{3}			F_{4}	$\mathrm{M}_{2}, 3$		${ }^{\prime}{ }_{4}$				T_{2}	
2-3	F_{1}		T3		Th_{4}	$\mathrm{F}_{2,4}$	$\mathrm{N}_{2,3}$		N_{4}		F_{3}		T_{2}
3-4	Th_{3}	F_{1}		T_{3}	k_{2}	Th_{4}	F_{4}	N_{3}		H_{4}			
4-5		Th_{3}	F_{1}					F_{4}	M_{3}		W_{4}	Th_{1}	
5-6	T_{3}						Π_{2}			F_{4}			Th_{1}
6--				Th_{3}		M_{4}		w_{2}					

Key:	
M	$=$ Monday
T	$=$ Tuesciay
W	$=$ Wednesday
$T h$	$=$ Thursday
F	$=$ Friday

Subscripts denote surveyor no.

TABLE 2-2. 1979 SURFACE STATION SAMPLING PLAN (OUTBOUND)

Time	River side	$\begin{aligned} & \text { Kood } \\ & \text { land } \end{aligned}$	1:3ran	F1iot	$\begin{aligned} & \text { l!igh - } \\ & \text { land } \end{aligned}$	Neston Center	$\begin{aligned} & \text { rhest } \\ & \text { nut } \\ & \text { Hill } \end{aligned}$	$\begin{aligned} & \text { Reser } \\ & \text { roir } \end{aligned}$	$\begin{aligned} & \text { Beacons- } \\ & \text { field } \end{aligned}$	Brook. line Hills	$\begin{array}{\|l} \text { Brook- } \\ \text { line } \\ \text { line } \\ \text { age } \\ \hline \end{array}$	$\begin{aligned} & \text { Long } \\ & \text { wood } \end{aligned}$	Fenuay
$\begin{aligned} & 6: 30- \\ & 7-8 \end{aligned}$			F_{2}		N_{4}		T_{3}	$\begin{aligned} & \mathrm{i}_{3} \\ & \mathrm{~T} \mathrm{~h}_{1} \end{aligned}$	Th_{1}			T_{4} W_{2}	Th_{4}
8-9				M_{4}			Th ${ }_{1}$						
9-10					W_{3}	Th_{1}					Th_{4}		
10-11	F_{2}	M_{4}		H_{3}			M_{2}		W_{1}	Th_{4}		N_{1}	
11-12	M_{4}	T_{1}	N_{3}		F_{4}	H_{2}			Th_{4}			T_{4}	
12-1		V_{3}			M_{2}		W_{1}	Th_{4}		M_{1}	T_{4}		
1-2						W_{1}			M_{1}			Th2	
2-3	Th_{3}			T_{4}				M_{1}	T_{1}	w_{3}			M_{4}
3-4					Th_{2}	F_{2}		.$^{\mathrm{T}} 1$				M_{4}	
4-5	M_{1}		W_{1}		$\mathrm{F}_{2,3}$		$\mathrm{T}_{1,2}$				M_{4}		
5-6			Th_{2}	F_{2}		$\mathrm{T}_{1,2}$				M_{2}	T_{4}	w_{3}	Th,
6-7	W_{1}	Th2							N_{2}		w_{5}		

Key:
$\mathrm{M}=$ Monday
$\mathrm{T}=$ Tuesday
$\mathrm{W}=$ Wednesday
$\mathrm{Th}=$ Thursday
$\mathrm{F}=$ Friday

Subscripts denote surveror no.
SAMPLE OF SURVEYOR'S SCHEDULE

TJME	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRI DAY
$\begin{gathered} 6: 20- \\ 7 A M \end{gathered}$	Eliot (in)		Newton Center (in)	Beaconsfield (out)	
7-8	Highland (in)	Riverside (in)	Chestnut Hill (in)	Reservoir (out)	Beaconsfield (in)
8-9	Newton Center (in)	Woodland (in)	Reservoir (in)	Chestrut Hill (out)	Brookline Hills (in)
9-10		Waban (in)		Newton Center (out)	Brookline villaci (in)
20-31	Longwood (out)		Beaconsfield (out)		Longwood (in)
11-1:		Woodland (out)		Woodland (in)	Fenway (in)
12-1 PM	Brookline Hills (out)		Chestnut Hill (out)	Wabon (in)	
- -	$\begin{aligned} & \text { Beaconsfield } \\ & \text { (out) } \end{aligned}$		Newton Center (out)		
2-3	Reservoir (out)	$\begin{aligned} & \text { Beaconfield } \\ & \text { (out) } \end{aligned}$			Riverside (ir)
3-4		Reservoir (out)			Woodland (in)
4-5	Riverside (off)	Chestnut Hill (out)	Waban (out)	Longwood (in)	Waban (in)
5-6		Newton Center (out)		Fenway (in)	
6-\%			Riverside (off)		

SCHEDULE
OBSERVER

As much as the 1979 survey data may not reflect the usual circumstance that the scheduling model seeks to portray, they still went through a vigorous editing process. Obvious anomalies were screened out, door counts of passengers were extrapolated to represent the entire train, and headways were approximated. The editing procedure is described in an earlier staff paper, "Passenger Flow Analysis, 1978."

3. SURVEY AND VALIDATION RESULTS - SURFACE STATIONS

Tables 3-1 through 3-4 show the 1979 survey data for the surface stations in their final form. Each data point in the time-station matrices represents the observed rate of passenger flow (total number of passengers/total headway), R_{IJ}, within time period I at station J. When the $R_{I J}$ are shown to be zero, there is a data gap that needs to be estimated.
3.1 METHOD OF ESTIMATION OF AVERAGE PASSENGER FLOW RATE

The statistical model described below was applied to these data for the estimation of the average rate of passenger flow. The $R_{I J}$ are assumed to vary with the station and time factors such that

$$
P\left(R_{I J}\right)=P\left(R_{I}\right) P\left(R_{J}\right)
$$

Further, $R_{I J}$ can be expressed as a sum of four components:

$$
R_{I J}=\mu+\alpha_{I}+\beta_{J}+\varepsilon_{I J}
$$

where μ is the grand average of flow rates across all time periods and all stations, α_{I} the time I effects, β_{J} the station J effects and $\varepsilon_{I J}$, random terms with a zero mean and a variance σ^{2}. Using a generalized least square approach with indicator variables representing the time and station factors, and making a logarithmic transformation of the $R_{I J}$, the final estimation model becomes:

$$
\begin{aligned}
\log _{e} R_{I J} & =\mu+\sum_{i} a_{i} T_{i}+\sum_{j} b_{j} S_{j}+\varepsilon_{I J} \\
T_{i} & =1 \text { if } i=I \text { and } I \neq t \\
& =0 \text { if } i \neq I \text { and } I \neq t \\
& =-1 \text { for all if if } I=t
\end{aligned} \begin{aligned}
& i=1,2,3, \ldots t^{-1}, t \text { being the total number } o f \\
& \text { time periods. }
\end{aligned}
$$

$$
\begin{aligned}
S_{j} & =1 \text { if } j=J \text { and } J \neq s \\
& =0 \text { if } j \neq J \text { and } J \neq s \\
& =-1 \text { for all } j \text { if } J=s
\end{aligned}
$$

$$
j=1,2,3, S-1, s \text { being the total number of stations. }
$$

TABLE 3-1. SURFACE STATIONS: BOARDING PASSENGERS PER MINUTE (RIVERSIDE TO LECHMERE)

Time	Kiver- side	Wood- 1and	Waban	Eliot	$\mathrm{H}_{1 \mathrm{gh}}-$	Newton Center	Chestnut Hill	Reser- voir	$\begin{aligned} & \text { Beacons- } \\ & \text { field } \end{aligned}$	Brook- line Hills	Brook- line Vi.1lage	Long wood	Fenway
700	1.68	2.43	1.00	0.33	1.14	0.97	0.00	0.00	0.00	0.00	0.63	0.00	0.00
730	4.00	2.63	0.00	0.00	2.86	2.22	1.71	0.00	0.67	1.16	1.22	0.00	1.67
800	3.44	3.39	0.00	0.00	2.65	3.36	2.45	0.00	0.38	2.29	1.68	0.00	2.65
830	0.00	2.13	1.45	0.49	2.28	3.54	2.50	1.70	0.00	2.10	0.00	2.53	0.00
900	0.00	1.17	1.21	1.76	3.03	2.67	2.61	1.32	0.00	1.16	0.00	2.74	0.00
930	1.65	$0.00{ }_{4}$	0.94	0.66	0.00	1.91	0.00	0.68	0.48	1.25	1.63	0.00	1.42
1000	1.23	0.00	0.52	0.68	1.50	1.48	0.00	1.07	0.41	0.14	0.70	0.00	1.04
1030	0.00	0.00	0.00	0.00	1.00	1.03	0.97	0.00	0.00	0.68	1.65	0.66	1.13
1100	0.00	0.00	0.00	0.00	0.41	1.71	0.68	0.00	0.00	0.00	1.50	0.63	0.97
1130	0.53	0.44	0.00	0.00	0.00	0.00	0.52	0.62	0.00	0.00	0.80	0.88	1.50
1200	1.52	1.14	0.00	0.00	0.00	0.00	0.50	0.27	0.00	0.00	0.00	0.76	1.62
1230	0.90	0.80	0.13	0.00	0.06	0.00	0.00	0.50	0.24	0.00	1.13	0.00	0.00
1300	0.86	0.95	0.39	0.35	0.82	0.00	0.00	0.46	0.20	0.00	1.07	0.00	0.00
1330	0.00	0.90	0.00	0.00	0.85	1.08	0.00	0.26	0.00	0.00	1.10	0.57	0.00
1400	0.00	0.48	0.77	0.00	0.90	0.91	0.00	0.60	0.22	0.00	0.00	0.53	0.00
1430	1.00	0.00	0.43	0.00	1.00	1.76	1.21	0.00	0.57	0.00	1.36	0.00	2.82
1500	0.94	0.00	1.14	0.00	0.94	1.92	2.29	0.00	0.62	0.00	0.71	0.00	2.11
1530	1.15	1.40	0.00	0.54	0.00	1.89	1.45	1.20	0.00	1.03	0.00	0.00	0.00
1600	1.40	2.27	0.00	0.38	0.00	1.48	1.77	0.48	0.80	0.93	1.27	0.00	0.00
1630	0.00	0.53	0.49	0.00	0.00	0.00	0.00	0.21	0.29	0.00	2.00	2.20	0.00
1700	0.00	1.55	0.64	0.00	0.00	0.00	0.00	0.48	0.13	0.00	1.43	1.29	0.33
1730	3.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.82	0.00	0.00	1.34
1800	2.81	0.00	0.00	0.00	0.00	0.00	2.00	2.67	0.00	0.62	0.00	0.00	1.16
1830	0.00	0.00	0.00	0.45	0.00	1.00	0.00	0.33	0.00	0.00	0.00	0.00	0.00
1900	0.00	0.00	0.00	0.50	0.00	0.67	0.00	0.61	0.00	0.00	0.00	0.00	0.00

TABLE 3-2. SURFACE STATIONS: DEBOARDING PASSENGERS PER MINUTE (RIVERSIDE TO LECHMERE)

Time	Wood 1and	Waban	Eliot	Highland	Newton Center	Chest- nut Hill	Reservoir	$\begin{aligned} & \text { Beacons - } \\ & \text { field } \end{aligned}$	$\begin{aligned} & \text { Brook- } \\ & \text { Zine } \\ & \text { Hil1 } \end{aligned}$	$\begin{aligned} & \text { Brook- } \\ & \text { line } \\ & \text { Village } \end{aligned}$	Long wood	Fenway
700	0.00	0.14	0.01	0.00	0.12	0.00	0.00	0.00	0.00	0.18	0.00	0.00
730	0.01	0.00	0.00	0.01	0.11	0.04	0.00	0.96	0.01	0.91	0.00	0.67
800	0.01	0.00	0.00	0.12	0.18	0.07	0.00	1.34	1.64	1.32	0.00	0.56
830	0.03	0.03	0.01	0.03	0.36	0.13	0.37	0.00	0.97	0.00	4.22	0.00
900	0.04	0.08	0.05	0.16	0.33	0.58	0.15	0.00	0.88	0.00	2.26	1.14
930	0.00	0.03	0.01	0.00	0.21	0.00	0.32	0.01	0.25	0.50	0.00	1.13
1000	0.00	0.01	0.01	0.01	0.10	0.00	0.34	0.01	0.43	0.37	0.00	0.64
1030	0.00	0.00	0.00	0.01	0.14	0.09	0.00	0.00	0.11	0.31	0.34	0.25
1100	0.00	0.00	0.00	0.03	0.10	0.06	0.00	0.00	0.00	0.11	0.50	0.41
1130	0.01	0.00	0.00	0.00	0.00	0.21	0.24	0.00	0.00	0.27	0.43	0.35
1200	0.01	0.00	0.00	0.00	0.00	r. 10	0.25	0.00	0.00	0.00	0.60	0.38
1230	0.02	0.03	0.00	0.02	0.00	0.00	0.19	0.04	0.00	0.26	0.00	0.00
1300	0.03	0.04	0.05	0.27	0.00	0.00	0.50	0.08	0.00	0.33	0.00	0.00
1330	0.01	0.00	0.00	0.01	0.13	0.00	0.26	0.00	0.00	0.30	0.24	0.00
1400	0.01	0.08	0.00	0.01	0.24	0.00	0.36	0.01	0.00	0.00	0.60	0.00
1430	0.00	0.01	0.00	0.00	0.21	0.16	r. 00	0.01	0.00	0.60	0.00	0.59
1500	0.00	0.01	0.00	0.13	0.75	0.04	0.00	0.07	0.00	0.63	0.00	0.49
1530	0.03	0.00	0.03	0.00	1.64	0.41	1.20	0.00	0.12	0.00	0.00	0.00
1600	0.01	0.00	0.07	0.00	0.68	0.40	0.71	1.20	0.10	0.53	0.00	0.00
1630	0.06	0.03	0.00	0.00	0.00	0.00	0.89	0.29	0.00	0.88	0.33	0.00
1700	0.10	0.04	0.00	0.00	0.00	0.00	0.70	0.34	0.00	0.67	0.54	0.11
1730	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.41	0.00	0.00	1.06
1800	0.00	0.00	0.00	0.00	0.00	0.42	0.00	0.00	0.19	0.00	0.00	1.52
1830	0.00	0.00	0.17	0.00	0.19	0.00	0.90	0.00	0.00	0.00	0.00	0.00
1900	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TABLE 3-3. SURFACE STATIONS: BOARDING PASSENGERS PER MINUTE (LECHMERE TO RIVERSIDE)

Time	hood- land	Waban	Eliot	$\begin{aligned} & \text { High- } \\ & \text { land } \end{aligned}$	Newton Center	Chest- nut Hill	Keservoir	Beacons- field	Brook. line Hill	$\begin{aligned} & \text { Brook } \\ & \text { line } \\ & \text { Vila } \end{aligned}$	Long wood	Fenway
700	0.00	0.00	0.00	0.00	0.00	0.05	0.27	0.24	0.00	0.00	0.14	0.00
730	0.00	0.01	0.00	0.31	0.00	0.00	0.50	0.00	0.00	0.00	0.37	0.56
800	0.00	0.10	0.00	0.44	0.00	0.00	0.91	0.00	0.00	0.00	1.70	0.63
830	0.00	0.00	0.30	0.18	0.00	0.33	0.00	0.00	0.00	0.00	0.00	0.00
900	0.00	0.00	-0.07	0.00	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.00
930	0.00	0.00	0.00	0.33	0.26	0.00	0.00	0.00	0.00	0.55	0.00	0.00
1000	0.00	0.00	0.00	0.12	0.17	0.00	0.00	0.00	0.06	0.94	0.00	0.00
1030	0.01	0.00	0.01	0.00	0.00	0.06	0.00	0.00	0.07	0.00	0.07	0.00
1100	0.04	0.00	0.01	0.00	0.00	0.15	0.00	0.06	0.03	0.00	0.40	0.00
1130	0.01	0.03	0.00	0.17	0.94	0.00	0.00	0.05	0.00	0.00	0.00	0.00
1200	0.01	0.07	0.00	0.05	0.30	0.00	0.22	0.06	0.00	0.38	0.40	0.00
1230	0.01	0.00	0.00	0.10	0.00	0.03	0.41	0.00	0.09	0.13	0.00	0.00
1300	0.13	0.00	0.00	0.15	0.00	0.05	0.56	0.00	0.24	0.23	0.00	0.00
1330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.00	0.00	0.46	0.00
1400	0.00	0.00	0.00	0.00	0.26	0.00	0.00	0.04	0.00	0.00	0.58	0.00
1430	0.00	0.00	0.05	0.00	0.00	0.00	0.19	0.01	0.00	0.00	0.00	0.89
1500	0.00	0.00	0.03	0.00	0.00	0.00	0.25	0.01	0.00	0.00	0.56	0.50
1530	0.00	0.00	0.00	0.17	0.52	0.00	0.29	0.00	0.00	0.00	0.00	0.00
1600	0.00	0.00	0.00	0.26	0.57	0.00	0.19	0.00	0.00	0.55	1.86	0.00
1630	0.00	0.01	0.00	0.06	0.00	0.52	0.00	0.00	0.00	0.75	0.00	0.00
1700	0.00	0.01	0.00	0.40	0.00	0.15	0.00	0.00	0.33	0.86	0.00	0.00
1730	0.00	0.04	0.03	0.24	0.31	0.00	0.00	0.00	1.16	1.31	1.70	1.40
1800	0.00	0.01	0.10	0.00	0.12	0.00	0.00	0.00	0.89	1.61	1.22	1.42
1830	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	2.31	0.00	0.00
1900	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.00	0.77	0.00	0.00

TABLE 3-4. SURFACE STATIONS: DEBOARDING PASSENGERS PER MINUTE (LECHMERE TO RIVERSIDE)

Time	River side	Wood1 and	Waban	Eliot	High1 and	Newton Center	Chestnut Hill	Reservoir	Beacons field	```Brook. line Hill```	$\begin{aligned} & \text { Brook- } \\ & \text { Iine } \\ & \text { Village } \end{aligned}$	Long wood	Fenway
700	0.00	0.00	0.00	0.00	0.00	0.00	0.35	0.30	0.00	0.00	0.00	0.41	0.00
730	0.00	0.00	0.27	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	1.52	0.83
800	0.00	0.00	0.43	0.00	1.19	0.00	0.00	0.00	0.00	0.00	0.00	1.94	0.75
830	0.00	0.00	0.00	0.23	1.24	0.00	4.24	0.00	0.00	0.00	0.00	0.00	0.00
900	0.00	0.00	0.00	0.07	0.00	0.00	1.78	0.00	0.00	0.00	0.00	0.00	0.00
930	0.00	0.00	0.00	0.00	0.61	0.85	0.00	0.00	0.00	0.00	0.80	0.00	0.00
1000	0.00	0.00	0.00	0.00	0.65	1.04	0.00	0.00	0.00	0.33	0.47	0.00	0.00
1030	1.06	0.83	0.00	0.25	0.00	0.00	0.61	0.00	0.00	0.63	0.00	0.64	0.00
1100	0.51	0.29	0.25	0.23	0.00	0.00	0.55	0.00	0.30	0.28	0.00	0.53	0.00
1130	0.65	0.72	0.10	0.00	1.17	0.97	0.00	0.00	0.14	0.00	0.00	0.00	0.00
1200	0.67	0.27	0.10	0.00	0.55	0.87	0.00	0.19	0.18	0.00	3.13	0.58	0.00
1230	0.00	0.75	0.00	0.00	0.41	0.00	0.47	0.93	0.00	0.16	0.96	0.00	0.00
1300	0.00	0.88	0.00	0.00	0.71	0.00	0.53	0.52	0.00	0.44	0.85	0.00	0.00
1330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.44	0.00	0.00	1.08	0.00
1400	0.00	0.00	0.00	0.00	0.00	0.84	0.00	0.00	0.88	0.00	0.00	0.91	0.00
1430	2.88	0.00	0.00	0.55	0.00	0.00	0.00	2.08	0.00	0.00	0.00	0.00	2.37
1500	0.76	0.00	0.00	0.59	0.00	0.00	0.00	2.83	0.70	0.00	0.00	1.56	2.53
1530	0.00	0.00	0.00	0.00	1.25	2.68	0.00	1.46	0.00	0.00	0.00	0.00	0.00
1600	0.00	0.00	0.00	0.00	0.74	1.70	0.00	3.22	0.00	0.00	1.27	0.98	0.00
1630	4.40	0.00	0.89	0.00	2.52	0.00	1.62	0.00	0.00	0.00	1.29	0.00	0.00
1700	1.83	0.00	1.14	0.00	3.00	0.00	1.15	0.00	0.00	1.89	0.41	0.00	0.00
1730	0.00	0.00	1.15	1.82	1.08	2.29	0.00	0.00	0.00	1.95	5.63	0.70	1.60
1800	0.00	0.00	1.22	2.17	0.00	1.65	0.00	0.00	0.00	2.70	3.32	3.10	2.03
1830	1.86	3.74	0.00	0.00	0.00	0.00	0.00	0.00	4.00	0.00	3.06	0.00	0.00
1900	2.36	2.20	. 0.00	0.00	0.00	0.00	0.00	0.00	1.39	0.00	1.64	0.00	0.00

The a_{i} and b_{i} are the coefficients associated with each T_{i} and S_{j} so that the following are true:

$$
\begin{aligned}
& \mu=\mu \\
& \alpha_{I}=a_{I} \text { for all } I \neq t \\
& \alpha_{t}=-\sum a_{i} i=1,2, \ldots, t-1 \\
& \beta_{J}=b_{J} \text { for all } J \neq S \\
& \beta_{S}=-\sum_{j} b_{j} j=1,2, \ldots, S-1
\end{aligned}
$$

The results of the model when applied to the 1979 data are shown in Tables 3-5 through 3-8.

As the generalized least square method is applied to model (1) for the estimation of the coefficients a_{i} and b_{j}, the following observations help to conclude that the use of model (1) is appropriate.

- All four regressions are significant with a significant F value.
- The model consistently explains about 67-78 percent of the data variation in all of the four matrices. The fit is by no means superior when compared with those for the underground stations. This may be due to the data problems discussed earlier in this report. The regression results, however, are adequate for our purposes.
o In all but one case the interaction test statistics are insignificant.
- The plots of the predicted values $\hat{R}_{I J}$ vs. the original data $R_{I J}$ do not reveal other than linear patterns around the line $\hat{R}_{I J}=R_{I J}$. Plotting the residuals vs. $\hat{R}_{I J}$ also confirms the homogeneity of the variance, etc. Figure 3-1 is an example of such plots.

Incidentally, the magnitude of the B_{J}, the station effects, reflects the "market shares" of the stations, which are discussed in the 1977° survey. Only the B_{J} add up to zero instead of one, and, because of the presence of a grand average, μ, in the model (1),

TABLE 3－5．ANALYSIS OF VARIANCE FOR THE REGRESSION， AND ESTIMATION OF BOARDING RATE FOR ALL LECHMERE TRAINS

ATALYSIS UF VARIAICE FOF THE KFGRESSSION

SOURCI GIF VAR」ATIOU	1）F	$51^{3 /}$		SOUAFE	MとAN	SOUARF	F－VALUE
ATTKIHUNABLE TO REGKFSSIDN	36 。		06	6.5590		1．8489	7.9980
DEVIATIUN FROM REGPLISSIJN	＊＊＊			2．1321		0.2312	

INTFACEPT $=$－ .009 MULPIPLF COR：K．COFFF．SQUARE＝．t7442				
VARIALIE		HETAR．CUEFF．	STO．ERRUP。 CF COEFF。	$\begin{aligned} & \text { COMPUTED } \\ & \text { TOVALIJE } \end{aligned}$
2		00.0114	n．1420	－0．06 49
3		C． 57.12	） 1607	3.5487
\％		0.7580	6.80137	4.7212
5		0.757 n	0.8019	4.6803
5		10.7811	0.1525	5.1421
7		0.2047	0.9065	1.0489
S		－0．1359	0.1523	－0．8922
3		－0．1891	Colk24	－i）．0417
1.		－0．3237	U．196 ${ }^{\text {d }}$	－1．0451
11		－0．50．17	0.1818	－2．7543
12		－0．3295	n．1965	－1．6720
13		－0．8871	0.1871	－4．8921
14		－0．3773	0.17 cb	－2．2127
15		－0．4325	0.19 C 2	－2． 2045
10		－0．4011	ก．9124	－2．1994
17		0.0991	0.9704	0.5814
18		0.1891	0.8774	1.1097
19		0.2329	0.1819	1.2809
20		0.1828	0.10194	1.1396
71		－ 0.2552	0.9973	－1．2935
24		－0．3438	0.1424	－1．8844
23		6.4374	0.2788	1.56 dA
71		0.5041	0.2153	2.34 i）
25		－0．3835	0.2779	－1．3810
26		0.4431	0.1245	3.5634
27		0.3254	0.1235	2.5341
24		－0．3130	0.1377	－2．2777
29		－C． 6228	n． 1544	－4．0334
311		ก．0839	0.1275	0.6582
31		0.4464	0.1171	3.8092
32		0.2060	0.1379	1.5505
33	－	－0．7831	0.1178	－2．4732
34		－0．8805	0.1377	－0．3963
35		－0．3755	0.1452	－2．5859
30		0.3443	0.1196	2.8801
37		0.2655	0.1520	1.7398

 Brookline
Village
 Brookline

estimated boarding rate

 Brookline
 Beacons-Brookline

 estimated standard error of the pred.

TABLE 3-6. ANALYSIS OF VARIANCE FOR THE REGRESSION, AND ESTIMATION OF DEBOARDING RATES FOR LECHMERE TRAINS

ANALYSIS OF VAPIANCE FDR THE REGPESSIDN

| SOURCE CF VARIATITN | CF SUM OF SQUARE | MEAN SOUARE | F-VALUE | |
| :--- | :--- | :--- | :--- | ---: | ---: |
| ATTRIBUTABLE TQ REGRESSION | 35. | 275.2254 | 7.8636 | 8.8317 |
| CEVIATICN FRCM REGRESSION | $\$ * *$ | 105.9552 | 0.8904 | |

INTERCEPT $=-2.011$
MULTIPLE CCRR. COEFF. SQUARE $=.72203$
STANDAFD EFRCR OF ESTIMATE=

VARIAELE	REGR. COEFF.	$\begin{aligned} & \text { STD. ERROR, } \\ & \text { CF COEFF. } \end{aligned}$	COMPUTED T-VALUE
2	-0.2655	0.4753	-0.5586
3	-0.5275	0.3361	-1.5696
4	0.6179	0.3361	1.8385
5	0.5622	0.3185	1.7655
6	0.7847	0.3019	2.5995
7	-0.3274	0.3364	-0.9733
8	-0.6751	0.3178	-2.1246
9	-0.7603	0.3595	-2.1152
10	-0.7577	0.3876	-1.9548
11	-0.4295	0.3883	-1.1036
12	-0.4401	0.4256	-1.0340
13	-0.4871	0.3899	-1.2495
14	0.4545	0.3622	1.2548
15	-0.7753	0.3880	-1.9981
16	-0.5206	0.3609	-1.4426
17	-0.5986	0.3868	-1.547t
18	-0.0972	0.3591	-0.270t
19	0.7276	0.3881	1.8748
20	0.6286	0.3364	1.8687
21	0.4603	0.3904	1.1790
22	0.2820	0.3608	0.7816
23	0.6407	0.6728	0.9524
24	0.6024	0.5500	1.0952
25	$0.905 t$	0.5484	1.6514
24	-2.0135	0.2511	-8.0193
27	-1.3948	0.2716	-5.134
28	-1.8941	0.3171	-5.9728
29	-1.2451	0.2695	-4.6202
30	0.6301	0.2358	2.6725
31	0.2000	0.2631	0.7942
32	1.0410	0.2441	4.2675
33	-0.3155	0.2707	-1.1653
34	0.3786	0.2896	1.3075
35	1.3581	0.2356	5.7648
36	1.7168	0.2985	5.7507

 all lecimere trains

ESTIMATED DEBOARDING RATE

总思

 ：
官 $\stackrel{\text { cos }}{0}$
 $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ 00} 0^{\circ} 0^{\circ}$

TABLE 3－7．ANALYSIS OF VARIANCE FOR THE REGRESSION， AND ESTIMATION OF BOARDING RATES FOR RIVERSIDE TRAINS

ANALYSIS CF VAPIV：CE゙ FOR THE FEGKESSSIUF

SOrrcr br vaplatlur	De	Sin	กf Sつリスアど。	${ }^{4} \mathrm{~F} / 2 \mathrm{~N}$	SGUARE＊	f＝JALUと
	35.		2C0．841と		S． 7343	9．U361
	79.		55.6977		（：．7141	

```
INTFROIDTE -1.03t
```



```
STA:IIAFO FHPI!M OF HSTINAJF= U.Q45
```


$\begin{array}{lr}\text { STI. ERRGK. } & \text { CGAPUTED } \\ \text { UF CUEFF: } & \text { IOVALIE゙ }\end{array}$

－（i． 240 a	9． 4296	－c． 5605
－11．9．75	0.39 .97	－v．6．132
0.0937	（1．7907	2.4922
1． 3371	r．8493	2.6979
ข。门21	$\bigcirc .620)$	U． 11340
0．19．？	0．4960	0．3886
00.3940	n． 1329	－ 0.9113
－1．7351	$0.3 y 01$	－3．10n9
－0．4724	0.3550	－1． 1307
（1．2074	0.3865	U． 2418
－0．20う2	0.3089	－0．0508
－ 0.8250	（1．35．37	± 4.3341
（1） 051	0.3537	0.1842
n． 3130	U．6079	0.5653
－0．0777	）． 4974	－）．15ち2
＝0．475s	ก．4383	－1．0943
－6．5375	0.3913	－1．3633
ก．171\％	0.4372	7.3257
$0.2 A R 9$	0.3834	u．9nys
へ。积？	0.4315	0.0055
0 O， 207	0.3885	0.7225
19.5067	U． 3081	2．1640
ก．4773	n． 3301	1.4460
－0．4114	0.499%	－0．8232
－1．8149	0.3128	－5． 1154
－7．1327	0.3049	－0．9053
－1．177n	0.3171	－3．0981
0.0245	0.2381	0.1040
1）． $6+13$	0． 2987	2.1469
－ 0.1821	0.3027	－6．0015
0.9030	？．2775	3．2566
－1．r．213	1． 29.5	－3．5154
1． 3797	0.3045	1． 4409
1.5101	i）． 2567	5.8923
1．3096	0.2550	$5.137 ?$

THE IMTFRACTION TEST STAT. FSTAT: . O. 7244

TABLE 3-8. ANALYSIS OF VARIANCE FOR THE REGRESSION, AND ESTIMATION OF DEBOARDING RATE FOR ALL RIVERSIDE TRAINS

ANALYSIS OF VARIANCE EOR THE REGRESSION

| SOURCE OF VARIATION | DF | SUA OF SQUARE | MEAN SQUARE | $\boldsymbol{P - V A I O E ~}$ |
| :--- | :--- | :---: | :---: | ---: | ---: | ---: |
| ATTRIBOTAELE TO REGRESSICN | 36. | 66.4766 | 1.8466 | 5.5121 |
| DEVIATION FROM REGRESSION | 85. | 28.4752 | 0.3350 | |

```
INTERCEPT= -0.144
MULTIPIE CCRR. COEFF. SQUARE=.70011
STANLARD ERROR OF ESTIMATE= 0.579
```

VABIABLE	REGR. COEPF.	$\begin{aligned} & \text { STD. ERROR. } \\ & \text { OF CORPF. } \end{aligned}$	$\begin{array}{r} \text { COMPUTED } \\ \text { T- VALDE } \end{array}$
2	-1.1486	0.3405	-3.3732
3	-0.1835	0.2666	-0.6884
4	0.1544	0.2978	0.5185
5	0.3259	0.3417	0.9538
6	-0.6184	0.4241	-1.4581
7	-0.4713	0.3400	-1.3862
8	-0.619E	0.2963	-2.0908
9	-0.3345	0.2435	-1.3736
10	-0.7605	0.2111	-3.6019
11	-0.6E08	0.2427	-2.7221
12	-0.7E5 1	0.1975	-3.8743
13	-0. $6 \leq 01$	0.2425	-2.8457
14	-0.5005	0.2425	-2.0639
15	-0.1218	0.4196	-0.2902
16	-0.0606	0.3427	-0.1768
17	0.7445	0.3005	2.4780
18	0.4463	0.2442	1.8278
19	0.3944	0.3410	1.9565
20	0.1959	0.2630	0.7446
21	0.6771	0.2636	2.5690
22	0.3981	0.2421	1.6446
23	0.7429	0.2106	3.5268
24	1.050 E	0.2257	4.6545
25	1.1492	0.2991	3.8422
26	0.2795	0.1884	1.4830
27	0.2113	0.2107	1.0031
29	-0.7940	0.1960	-4.0513
29	-0.8974	0.2165	-4.1449
30	0.2024	0.1633	1.2395
31	0.4301	0.2053	2.0952
32	0.3402	0.2074	1.6401
33	0.2046	0.2022	1.0121
34	-0.4004	0.2200	-1.8204
35	-0.1665	0.2081	-0.8001
36	0.3343	0.1742	1.9185
37	0.1885	0.1756	1.0731

THE INTERACTION TEST STAT. fStAT: 0.6283

 す。

䔍
estimated deboarding rate－all riverside trains

Fenway
 Mojoso膏

$\stackrel{\text { 号 }}{ }$

商

FIGURE 3-1. GRAPH OF RAW DATA, R ${ }_{\text {IJ }}$, VS. ESTIMATED AVERAGES, $\hat{R}_{I J}$: BOARDING PASSENGERS PER MINUTE (RIVERSIDE TO LECHMERE)
some betas are negative. To facilitate later comparisons between the β_{J} and the market shares, p_{J}, estimated from the 1977 survey, we further define a new set of variables, M_{J}.

$$
M_{J}=\frac{1+\beta_{J}}{\frac{\sum J}{J}\left(1+\beta_{J}\right)} \quad J=1,2, \ldots s
$$

$M_{J}, J=1,2, \ldots S$, are always positive and add up to 1 , and the variance of $M_{J}, \operatorname{Var}\left(M_{J}\right)$, is $\frac{1}{S^{2}} \operatorname{Var}\left(\beta_{J}\right), J=1,2, \ldots S$.

3.2 CONSISTENCY OF PASSENGER VOLUME ESTIMATES-SURFACE STATIONS

Even though use of Model (1) has been determined appropriate, several additional questions need to be addressed.

- The 1977 survey reveals a particular pattern of passenger flow into the Boston downtown (Riverside to Lechmere) area, showing the peak periods during the morning rush hours and the early afternoon (2:00-3:00 pm.). Does this pattern still persist in 1979?
- o The 1978 underground station passenger survey postulates an increase (approximately by 40 percent) in the use of the Riverside Line; can we substantiate that claim using the data from the 1979 survey?
- Can we also validate the 1977 market shares estimate for the surface stations seeing that there is no reason for such changes in spite of the increase of the total passenger volume?

3.2.1 Consistency Of Temporal Dispersion - Surface Stations

In comparing the 1977 and 1979 passenger survey results, we have to note that the two passenger profiles are defined differently. One is an on-board trip count while the other is a station count. A profile derived from the former is a moving average of the number of loading passengers per trip while that derived from the latter denotes the average rate (per minute) of passengers (transit users) arriving at the station. One is dependent on the time the train leaves the trip originating station; the other describes passenger activity at times when the
train arrives at the station. Because of the difference in definitions, a slight shift in pattern is not surprising when the two profiles are laid over one another. Figures 3-2 through 3-5 compare the inbound and outbound profiles of the 1979 passenger demand at Newton Center with the 1977 trip profiles of the entire surface segment of the Riverside Line. Immediately, a visual impression is that the points of inflection from both profiles correspond quite well. The extra peak portrayed by the 1979 inbound profile is the result of a 2 -week long set of Red Sox Home Games which brought an unusual influx of people into Fenway Park.

3.2.2 Average Daily Volume Estimates - Surface Stations

For 1977 the average total daily inbound patronage of the Riverside Line surface segment was estimated at 8734 bounded by a 95 percent confidence interval of (7793, 9904). The total outbound volume was, however, estimated at 9893 bounded by a 95 percent confidence interval of (8799 , 10987). According to the 1979 surface station survey, the two totals are 10,586 and 11,054 respectively, considerably higher than those for 1977. Because of the huge standard errors associated with the statistics, the increase in ridership cannot be substantiated by statistical testings. It is interesting, nevertheless, to note that, as in the previous 1977 analysis, the new survey shows that 70 percent of the inbound passergers at these stations go beyond Fenway into the underground towards Metropolitan Boston.

3.2.3 Comparison of Market Share Estimates

Comparing the two sets of market shares derived from two different surveys within different time frames and employing different methods of estimation certainly requires careful considerations. First, the data variations may reflect more than a random fluctuation, and it is difficult to attribute a significant difference to any one specific cause. Second, the problem is compounded by the 1979 survey data deficiencies mentioned earlier. That is, environmental changes may affect the market shares of the stations, and latent residual interaction between the station factor and time factor not counteracted by the logarithmic

FIGURE 3-2. NEWTON CENTER: INBOUND BOARDING PROFILE

FIGURE 3-3. INBOUND SMOOTHED SERIES, 1977

FIGURE 3-5. OUTBOUND SMOOTHED SERIES, 1977
(smoothed over a length of 11)
transformation of data may have caused some estimation bias. Figure 3-6 graphically compares the 1977 and 1979 surface station market shares for inbound trips. Tables 3-9 and 3-10 show the 1977 pooled estimates of market shares for the inbound and outbound trips at the 13 stations. Since the inbound boarding and outbound deboarding patterns are considered to be of more importance in the analysis of passenger activity at the surface stations, only these are portrayed here. Tables 3-11 and 3-12 compare the 1977 and 1979 market shares; they also record the test statistic t_{J},

$$
t_{J}=\frac{P_{J}-M_{J}}{\sqrt{S E\left(P_{S}\right)^{2}+S E\left(M_{J}\right)^{2}}} \quad J=1,2,3 \ldots 13
$$

which has a standard normal distribution. At a significant level of 0.5 , the difference between P_{J} and M_{J} will be considered significant should $\left|t_{J}\right|>1.96$.

In both tables, only Longwood is shown to have two significantly different estimates of market shares in the two surveys. We may place this single difference in proper perspective by considering the following. If all 13 purported differences are in fact zero, and each is tested at a 5 percent level of significance, then the average number of "false significances" should be

$$
\leq(S)=\sum_{i=1}^{13} .05=.65
$$

Our null hypothesis is that the sets of M_{J} are no different from the sets of P_{J}, but our test results indicate one station out of 13 for which they are significantly different.

Can we assume that in fact it is very probable for this single significant case to have occured by chance? Under this assumption, the observed cases significant, S, is roughly Poisson. One can show that

$$
\sqrt{4 \mathrm{~S}+2}-\sqrt{4 \mathrm{E}(\mathrm{~S})+1} \sim N(0,1) .
$$

TABLE 3-9. 1977 MARKET SHARES OF INBOUND BOARDING PASSENGERS

STATION J	$\begin{gathered} \text { MORNING } \\ \text { TRIPS } \\ \hline \end{gathered}$	AFTERNOON TRIPS	$\begin{gathered} \mathrm{P}_{J} \\ \text { POOLED ESTIMATE } \end{gathered}$	$\operatorname{SE}\left(P_{J}\right) *$ STANDARD ERRORS
Riverside	. 119	. 088	. 1027	. 0178
Woodland	. 086	. 070	. 0778	. 0156
Waban	. 066	. 052	. 0590	. 0137
Eliot	. 052	. 034	. 0428	. 0118
Highland	. 104	. 069	. 0855	. 0164
Newton Center	. 115	. 118	.1163	. 0188
Chestnut Hill	. 061	. 088	. 0753	. 0154
Reservoir	. 058	. 067	. 0624	. 0142
Beaconsfield	. 040	. 029	. 0342	. 0106
Brookline Hill	. 092	. 080	. 0855	. 0164
Brookline Village	. 104	. 095	. 0992	. 0175
Longwood	. 036	. 052	. 0445	. 0121
Fenway	. 066	. 158	. 1146	. 0187
	1.000	1.000	1.000	
Number of passengers in sample	$\mathrm{N}_{1}=556$	$\mathrm{N}_{2}=613$	$\mathrm{N}=\mathrm{N}_{1}+\mathrm{N}_{2}=1169$	
$* \operatorname{SE}\left(P_{J}\right)=\sqrt{p_{J} q_{J}\left(\frac{1}{N_{1}}+\right.}$				

TABLE 3-10. 1977 MARKET SHARES OF OUTBOUND DEBOARDING PASSENGERS

STATION J	MORNING TRIPS	AFTERNOON TRIPS	$\stackrel{\mathrm{P}_{\mathrm{J}}}{\text { POOLED ESTIMATE }}$	$S E\left(P_{J}\right)$ STANDARD ERRORS
Riverside	. 104	. 106	. 105	. 0178
Woodland	. 095	. 093	. 094	. 0170
Naban	. 054	. 055	. 055	. 0133
Eliot	. 026	. 047	. 040	. 0114
Highland	. 067	. 095	. 085	. 0162
Newton Center	. 139	. 119	.116	. 0186
Chestnut Hill	. 082	. 073	. 077	. 0155
Reservoir	. 039	. 076	. 062	. 0140
Beaconsfield	. 019	. 040	. 033	. 0104
Brookline Hill	. 076	. 069	. 072	. 0150
Brookline Village	. 093	. 099	. 097	. 0172
Longwood	. 059	. 040	. 047	. 0123
Fenway	. 145	. 088	. 108	. 0181
	1.000	1.000	1.000	
Number of passengers in sample	$N_{1}=461$	$\mathrm{N}_{2}=821$	$\mathrm{N}=\mathrm{N}_{1}+\mathrm{N}_{2}=1282$	
$\operatorname{SE}\left(P_{J}\right)=\sqrt{P_{J} q_{J}\left(\frac{1}{\Gamma_{1}}+\frac{1}{N_{2}}\right)}$				

TABLE 3-11. COMPARISON OF MARKET SHARES OF INBOUND BOARDING PASSENGERS

STATION J	$\begin{gathered} 1977 \\ \mathrm{P}_{\mathrm{S}} \\ \hline \end{gathered}$	$\underline{S E\left(P_{J}\right)}$	$\begin{gathered} 1979 \\ M_{\mathrm{J}} \\ \hline \end{gathered}$	SE (M_{J})	$\stackrel{T}{\text { Statistics }}$
Riverside	. 1027	. 0178	. 1110	. 0095	-. 411
Woodland	. 0778	. 0156	. 1019	. 0095	-1.319
Waban	. 0590	. 0137	. 0528	. 0106	. 358
E1iot	. 0428	. 0118	. 0291	. 0119	. 817
Highland	. 0855	. 0164	. 0833	. 0098	. 115
Newton Center	. 1163	. 0188	. 1113	. 0090	. 240
Chestnut Hill	. 0753	. 0154	. 0928	. 0102	-. 947
Reservoir	. 0624	. 0142	. 0551	. 0091	. 433
Beaconsfield	. 0342	. 0106	. 0092	. 0106	1.668
$\begin{aligned} & \text { Brookline } \\ & \text { Hill } \end{aligned}$. 0855	. 0164	. 0480	. 0112	1.888
Brookline Village	. 0992	. 0175	. 1034	. 0092	-. 212
Longwood	. 0445	. 0121	. 0973	. 0117	-3.137*
Fenway	$\frac{.1146}{1.000}$. 0187	. 0492	. 0573	1.085
$T=\frac{\left\|P_{J}-M_{J}\right\|}{\sqrt{S E^{2}\left(P_{J}\right)+S}}$	$E^{2}\left(M_{J}\right)$				

TABLE 3-12. COMPARISON OF MARKET SHARES OF OUTBOUND DEBOARDING PASSENGERS

STATION J	$\begin{gathered} 1977 \\ \mathrm{P}_{\mathrm{J}} \\ \hline \end{gathered}$	$\begin{aligned} & \text { EST } \left._{\mathcal{P}_{\mathrm{J}}}\right) \\ & \mathrm{SE}^{2} \\ & \hline \end{aligned}$	$\begin{gathered} 1979 \\ M_{J} \\ (1979 \\ \text { SURVEY) } \\ \hline \end{gathered}$	$\begin{aligned} & \left.\mathrm{EST}_{\mathrm{O}_{\mathrm{J}}}\right) \\ & \mathrm{SE}\left(\mathrm{M}_{\mathrm{J}}\right. \end{aligned}$	$\stackrel{\text { T }}{\text { STATISTICS }}$
Riverside	. 105	. 0178	. 098	. 014	. 309
Woodland	. 094	. 0170	. 093	. 016	. 043
Waban	. 055	. 0133	. 016	. 015	1.95
Eliot	. 040	. 0114	. 008	. 017	1.85
Highland	. 085	. 0162	. 093	. 013	-. 385
Newton Center	. 116	. 0186	. 110	. 016	. 244
Chestnut Hill	. 077	. 0155	. 103	. 016	-1.167
Reservoir	. 062	. 0140	. 093	. 016	-1.458
Beaconsfield	. 033	. 0104	. 046	. 017	-. 652
$\begin{aligned} & \text { Brookline } \\ & \text { Hill } \end{aligned}$. 072	. 0150	. 064	. 016	. 365
Brookline Village	. 097	. 0172	. 103	. 013	-. 278
Longwood	. 047	. 0123	. 091	. 014	-2.36*
Fenway	. 108	. 0181	. 072	. 053	. 643
	1.000		1.000		
$\sqrt{S E\left(P_{J}\right)^{2}+S E}\left(M_{J}\right)^{2} \sim N(0,1)$					
*Indicates th level.	the	rence i	nificant	a 95%	ence

Thus, in the current study,

$$
\sqrt{4(1)+2}-\sqrt{4(.65)+1}=.55
$$

which is not significant for a standard normal deviate, indicating that the assumption cannot be rejected. Notwithstanding the lack of rigorous proof, we shall be content that the "multiple determination" technique has not detected a significant difference in the two sets of parameters (i.e. market shares).

3.3. CONCLUSION

So far, in the validation process of the 1977 surface station passenger flow estimates, the 1979 survey and analyses have not proved anything contradictory to previous results. The patterns of flow for the inbound and outbound passengers are compatible; the volume or the level of demand remain unchanged; and the estimates of market shares exhibit little deviation from the past. However, the "success" of the validation should not overshadow the need for a cautious approach in accepting the reliability of the 1979 survey data. The following have to be considered:

- Tremendous data variation has prohibited the confirmation of an increase in level of passenger demand.
- Regression results for the surface stations are, after all, not as favorable as those for the underground stations. We expected the contrary since the former are more homogeneous in nature (all servicing residential districts).

4. VALIDATION FOR UNDERGROUND STATIONS

The validation process for the underground station passenger flows proves to be somewhat dubious in its outcome. At the outset the trend at each station is often over shadowed by the tremendous fluctuations in the individual observed passenger count at any instantaneous moment. Tables 4-1 through 4-4 document the 1979 survey data for underground stations. When the 1978 estimated trends are compared with some of these individual observations taken in 1979, a wide margin of error has to be admitted. This margin of error includes not only the sampling error of the estimated trend, but also the intrinsic variability of one real life observation to another. In fact, the latter component has become so excessive that the acceptance range for a null hypothesis that the 1979 data are essentially similar in distribution to the 1978 estimated profile is deemed unmeaningful. At a 95 percent confidence level, the test does not show any significance.

Another popular test for the goodness of fit of the data is the chi-square goodness of fit test, which posits that if the chi-square statistic,

$$
x^{2}=\sum_{i=1}^{n} \frac{\left(f_{i-}-e_{i}\right)^{2}}{e_{i}^{2}}
$$

where f_{i} is the ith observed value and
e_{1} is the corresponding expected value
is too large (when compared with a theoretical chi-square distribution), the comparability or goodness of fit of the data should be rejected. Again, since the power of this test is sensitive to sample size and scale of the data, a significant test result (meaning a large χ^{2}) does not preclude the possibility of a good correlation between the two sets of data. The study in consideration is a good example. The chi-square test rejects the fit, while the multiple tests using confidence intervals as described in the paragraph above results in the opposite.

TABLE 4-1. UNDERGROUND STATIONS - 1979 SURVEY DATA: BOARDING PASSENGERS PER MINUTE (LECHMERE TO RIVERSIDE)

Time	Kenmore	$\begin{aligned} & \text { Audito- } \\ & \text { rium } \end{aligned}$	Copley	$\begin{aligned} & \text { Arling - } \\ & \text { ton } \end{aligned}$	Boylston	Park	Govern- ment Center	Hay market	$\begin{aligned} & \text { North } \\ & \text { Station } \end{aligned}$	$\begin{aligned} & \text { Scjence } \\ & \text { Park } \end{aligned}$	Lechrere
730	0.55	1.40	0.00	0.88	0.00	5.68	0.00	0.00	0.00	0.00	6.50
800	1.27	2.63	0.00	2.71	0.10	11.50	0.00	4.31	0.00	0.00	0.25
830	0.76	0.83	0.00	2.74	0.19	6.56	0.00	3.34	0.00	0.00	6.19
900	1.33	0.87	0.00	1.61	0.14	7.73	0.00	5.57	0.00	0.00	3.71
930	0.26	0.83	0.00	0.65	0.28	2.09	0.00	0.88	0.00	0.00	2.58
1000	0.81	0.55	0.00	0.95	0.40	2.79	0.00	2.57	0.00	0.r.o	6.80
1030	0.00	0.00	0.63	0.00	0.00	4.80	4.58	0.00	1.55	0.20	3.66
1100	0.00	0.00	0.26	0.00	0.00	5.33	1.04	2.38	2.17	0.40	5.10
1130	0.00	0.00	1.35	0.00	0.00	4.87	4.16	0.32	1.13	0.11	1.93
1200	0.00	0.00	0.83	0.00	0.00	4.67	2.29	1.88	2.22	0.15	5.06
1230	0.00	0.00	2. 56	0.00	0.00	5.88	3.67	1.58	1.31	0.27	2.91
1300	0.00	0.00	1.37	0.00	0.00	3.04	0.00	1.81	1.63	0.34	4.30
1330	0.00	0.40	2.13	3.67	0.00	0.00	1.82	0.00	0.00	0.83	0.00
1400	0.00	0.45	2.18	2.69	0.00	0.00	3.26	0.00	0.00	0.91	0.00
1430	0.00	0.93	3.10	2.73	0.00	0.00	4.00	0.00	0.00	0.24	0.00
1500	0.00	0.53	4.57	5.13	0.00	0.00	2.47	0.00	0.00	0.61	0.00
1530	0.00	1.40	3.64	2.00	0.00	0.00	6.79	0.00	0.00	0.03	0.00
1600	0.00	2.00	3.85	1.79	0.00	0.00	0.00	0.00	0.00	1.86	0.00
1630	0.00	1.17	2.88	8.92	0.00	0.00	0.00	0.00	4.44	0.21	1.70
1700	0.00	1.74	1.76	2.05	0.00	0.00	0.00	0.00	3.62	0.57	0.64
1730	0.00	3.23	1.21	3.00	0.10	0.00	0.00	0.00	3. 56	1.20	3.21
1800	0.00	2.14	2.45	1.47	0.00	0.00	0.00	0.00	0.71	0.26	1.39
1830	0.00	1.36	1.56	4.45	0.00	0.00	0.00	0.00	1.89	0.60	4.79
1900	0.00	1.33	1.57	0.70	0.00	0.00	0.00	0.00	2.55	0.63	1.81
2000	0.00	0.00	0.00	0.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TABLE 4-2. UNDERGROUND STATIONS - 1979 SURVEY DATA:
 DEBOARDING PASSENGERS PER MINUTE (LECHMERE TO RIVERSIDE)

Time	Kenmore	Auditorium	Copley	$\begin{aligned} & \text { Arling - } \\ & \text { ton } \end{aligned}$	Boylston	Park	Government Center	Hay market	North Station	$\begin{aligned} & \text { Science } \\ & \text { Park } \end{aligned}$
700	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
730	3.14	0.84	0.00	4.48	0.00	2.21	0.00	0.00	0.00	0.00
800	0.80	2.25	0.00	9.65	0.85	3.05	0.00	1.07	0.00	0.00
830	4.55	2.03	0.00	8.74	0.51	2.00	0.00	0.00	0.00	0.00
900	4.54	1.61	0.00	7.86	1.39	4.33	0.00	0.00	0.00	0.00
930	1.81	0.96	0.00	5.43	0.78	0.65	0.00	0.00	0.00	0.00
1000	0.85	1.12	0.00	2.53	0.63	2.00	0.00	0.00	0.00	0.00
1030	0.00	0.00	3.83	0.00	0.00	4.96	0.29	0.00	0.00	2.00
1100	0.00	0.00	1.10	0.00	0.00	4.23	0.29	0.23	0.00	0.10
1130	0.00	0.00	2.13	0.00	0.00	1.90	0.29	0.05	0.00	0.00
1200	0.00	0.00	3.83	0.00	0.00	2.37	0.36	0.06	0.00	0.09
1230	0.00	0.00	1.83	0.00	0.00	3.48	0.41	0.04	0.00	0.00
1300	0.00	0.00	5.17	0.00	0.00	0.93	0.00	0.00	0.00	0.10
1330	0.00	1.10	3.63	3.00	0.00	0.00	0.43	0.00	0.00	0.53
1400	0.00	1.42	1.62	0.88	0.00	0.00	0.55	0.00	0.00	0.16
1430	0.00	1.43	1.57	0.00	0.00	0.00	0.30	0.00	0.00	0.04
1500	0.00	3.80	8.03	1.92	0.00	0.00	0.80	0.00	0.00	0.04
1530	0.00	1.23	4.28	1.37	0.00	0.00	0.63	0.00	0.00	0.00
1600	0.00	2.26	4.21	1.29	0.00	0.00	. 0.00	0.00	0.00	0.14
1630	0.00	0.63	1.94	4.67	0.00	0.00	0.00	0.00	0.44	0.00
1700	0.00	3.22	2.76	1.10	0.00	0.00	0.00	0.00	0.48	0.21
1730	0.00	2.92	1.36	1.20	0.00	0.00	0.00	0.00	0.31	0.08
1800	0.00	5.03	1.75	1.10	0.00	0.00	0.00	0.00	0.19	0.21
1830	0.00	1.79	2.33	0.83	0.00	0.00	0.00	0.00	0.09	0.80
1900	0.00	2.86	1.16	1.07	0.00	0.00	0.00	0.00	0.21	0.05

TABLE 4-3. UNDERGROUND STATIONS - 1979 SURVEY DATA: BOARDING PASSENGERS PER MINUTE (RIVERSIDE TO LECHMERE)

TABLE 4-4. UNDERGROUND STATIONS - 1979 SURVEY DATA:
DEBOARDING PASSENGERS PER MINUTE (RIVERSIDE TO LECHMERE)

Time	Kenmore	Audito- rium	Copley	$\begin{aligned} & \text { Arling- } \\ & \text { ton } \end{aligned}$	Boylston	Park	Govern- ment Center	Haymarket	North Station
700	0.00	0.00	0.00	0.00	6.00	0.00	0.00	0.00	0.00
730	0.33	0.80	0.00	0.00	0.96	0.00	8.67	0.33	0.00
800	0.57	1.67	0.00	0.00	2.05	0.00	2.03	1.18	0.00
830	0.88	2.05	0.00	0.00	1.91	0.00	9.47	1.42	0.00
900	1.23	2.19	0.00	0.00	2.26	0.00	8.71	1.40	0.00
930	1.05	1.30	0.00	0.00	2.68	0.00	21.71	1.11	0.00
1000	0.45	1.15	0.00	0.00	1.23	0.00	7.72	1.43	0.00
1030	0.00	0.00	0.00	0.00	0.00	8.29	0.00	6.80	1.00
1100	0.00	0.00	0.00	0.00	0.00	10.03	0.00	1.12	0.59
1130	0.00	0.00	0.00	0.00	0.00	9.00	0.00	2.90	2.22
1200	0.00	0.00	0.00	0.00	0.00	12.05	0.00	4.13	1.06
1230	0.00	0.00	0.00	0.00	0.00	16.38	0.00°	3.90	1.59
1300	0.00	0.00	0.00	0.00	0.00	3.78	0.00	2.15	2.06
1330	0.00	0.00	0.00	0.47	1.12	14.26	7.59	0.00	0.00
1400	0.00	0.00	0.00	1.00	0.40	6.91	8.04	0.00	0.00
1430	0.00	0.00	0.00	0.83	0.30	9.60	3.24	0.00	0.00
1500	0.00	0.00	0.00	1.74	1.60	0.75	1.03	0.00	0.00
1530	0.00	0.00	0.00	0.77	0.52	20.75	4.62	0.00	0.00
1600	0.00	0.00	0.00	0.66	0.43	13.06	9.32	0.00	0.00
1630	0.00	0.00	2.03	9.73	0.00	0.00	0.00	0.00	0.00
1700	0.00	0.35	3.07	2.05	0.00	0.00	0.00	0.00	0.00
1730	0.00	1.04	3.07	1.05	0.00	0.00	0.00	0.00	0.00
1800	0.00	0.65	2.53	6.05	0.00	0.00	0.00	0.00	0.00
1830	0.00	0.70	1.55	1.32	0.00	0.00	0.00	0.00	0.00
1900	0.00	0.36	0.90	0.63	0.00	0.00	0.00	0.00	0.00

Our last resort, therefore, is not to compare the trend with the 1979 observed data, but rather to compare the 1978 data series (from which the trend was derived) with the 1979 data series after the trend is taken out from both. The comparisons will be with respect to:

- the normality of the two series of residuals,
- the similarity of locations and variances if the as sumption of normality is verified.

Figure 4-1 presents four histograms of the distribution of the detrended inbound-outbound boarding-deboarding passenger flow rates. Our first step is to test the normality of the eight distributions. A cursory glace at these histograms may or may not convince us of the strength of our hypothesis. Normality probability plots are made so that normality is accepted if the plot shows an approximately straight line and rejected if it curves substantially. Still, if visual examination does not give enough credence to the conclusions, formal tests based on these plots follow.

Verifying the similarity of locations and variances is straight forward once the two samples are accepted as independent coming from a normal population. Table 4-5 depicts the relevant statistics for each sample.

Two conclusions can be gathered from the test results above. First, the residuals are normally distributed and the variances of the residual distribution have proved to be similar for the two years. That is, the amount and pattern of fluctuation of the passenger flow for 1979 is no different from that of the year before. Second, the testing of the equality of the residual averages reveals a significant difference in the levels for boarding flows in both directions. For these two flows, the 1979 distributions of $\left(\mathrm{R}_{79}-\mathrm{R}_{78}\right)$ have a positive expectation (see Figure 4-1) depicting a definite increase in the level of passenger demand in 1979 over 1978. That the increase has not become obvious for the deboarding flow may be due to the tendency of the surveyors to concentrate on boarding rather than deboarding counts. The magnitude of increase, as seen from the new mean of ($\mathrm{R}_{79}-\hat{R}_{78}$), is at least 25 percent.

TABLE 4-5. RESIDUALS DEFINED AS $R-\hat{R}=$ (OBSERVED - ESTIMATED)

A plot of the 1979 observed rates and the 1978 predicted rates shows a significant correlation between the two. The interest lies in the proportion of variations in the former that the latter group is able to explain. A consistent R^{2} of 50-55 percent prevails over all regressions for each direction - boarding or deboarding combination. That is, although \hat{R}_{78}, as derived from the statistical model using data from '78, correlates in general with R_{79}, using \hat{R}_{78} to predict passengers flow in $\quad 79$ is not the most statistically propitious in that the average level of demands differs from year to year and the random fluctuation of the demand over the time periods of the day makes one-to-one comparison difficult. The extensive variability in human behavior (with respect to choice of mode, choice of travel time and choice of route) and the environmental conditions make a moment to momemt prediction of passenger flow rate difficult.

4.1 STATION BY STATION VALIDATION

After a rather cursory overview on the comparability of the 1978 and 1979 predicted and observed data for the underground stations system as a whole, we now turn to the individual stations, examine their market shares and verify that the model (1) gives reasonable estimates for these segments that comprise the entire underground line. A few findings can be summarized as follows:
o Model (l) gives reasonable estimates for stations whose levels of passenger traffic are quite consistent throughout the day (e.g., Park Street, Kenmore, Auditorium, etc.). A particular anomaly is the Arlington Station (business district) which receives an extremely high influx of deboarding passengers during the morning rush hours and of boarding passengers during the afternoon rush hours but maintains a relatively low profile for the rest of the day.

- For those stations which exhibit different traffic patterns from the rest of the system, model (1)'s estimates are less effective than desired. A case in point is the Copley Station whose peak traffic hours occur around noon time or in the early afternoon.

Figures 4-2 through 4-5 represent graphically a sample of the individual station profiles. The correspondence between the 1978 and 1979 passenger flow trends ranges from excellent (Auditorium, Park St.) to poor (Copley, Arlington). This reflects an internal weakness of the model over and above errors incurred either during the data collection phase or at random. The weakness lies in the original assumption that the underground stations are homogeneous in character. Interactions between the station and time period (the two factors in the model) are, therefore, treated as negligible. Even when a modified logarithmic model is employed, the residual effect of the interaction is still significant enough for some stations that ignoring it induces bias in the model estimates. This is serious enough to warrant an a priori warning in the application of this unreplicated, unbalanced linear model to the passenger flow estimation problem: This model should be used only when no significant aberrations in passenger traffic pattern (not level) are suspected among the stations for which an estimated profile is required. The Green Line Riverside Surface Stations are a good example of homogeneity in that all the surface stations are in residential areas, and, with the exception of Fenway, are consistent in their market shares of the level passenger demands.

FIGURE 4-2. AUDITORIUM BOARDING PROFILE (TO RIVERSIDE)

FIGURE 4-3. COPLEY BOARDING PROFILE (TO RIVERSIDE)

FIGURE 4-4. PARK ST. BOARDING PROFILE (TO RIVERSIDE)

FIGURE 4-5. GOVERNMENT CENTER INBOUND BOARDING PROFILE (TO RIVERSIDE)

5. SUMMARY OF SUFFICIENCY OF METHOD

5.1 UNDERGROUND STATIONS

A major handicap of any ridership survey is the huge intrinsic fluctuation in passenger arrivals, particularly at transfer points where passengers generally arrive in large clusters. Furthermore, in this particular survey, the use of an additive statistical model applied to the heterogeneous underground stations has failed to capture some station specific characteristics or travel patterns. An example is the Copley or Arlington Station where particularly high peaks are exhibited in the early afternoons and late afternoons respectively. The 1978 survey did not consider such anomalies as inherent in the underground station structure, and therefore, missed these time periods for these stations when random selection of schedules was performed. Consequently, the statistical procedure, having utilized the average demand level for Arlington, for instance, and the average demand level for the late afternoon periods to estimate the missing data, underestimates the presence of the statistical interaction between the two effects on demand levels. In spite of the caveats, the 1978 and 1979 passenger profiles compare fairly well with respect to the shape of the distribution over time. An increase of about 25 percent in level is detected, although not substantiated by formal statistical testing.

5.2 SURFACE STATIONS

For the surface stations along the Riverside Line, data deficiencies again have affected the general fitness of the statistical model. Still, the viability of the model with respect to the estimation of passenger flows is attested by comparing 1979 results with those of the 1977 trip survey. The market shares of the stations remain unchanged, as does the daily pattern of passenger activity. Although the estimated total passenger volume indicates an increase in patronage, the exact percentage increase is difficult to ascertain due to the wide margin of error associated with both the 1977 and 1979 estimates.

5.3 GENERAL SUMMARY

The 1979 passenger survey of the MBTA Riverside Line has accomplished two purposes: 1) to validate the estimates derived in 1978 using the statistical modelling approach for the underground stations; 2) to apply similar survey and modelling procedures to the surface stations and to compare results with those of the 1977 trip survey.

Recommendation of the survey scheme and the application of the statistical model is made with caution. It is believed, however, that when applied properly, the methodology is an economical and reliable approach to obtain passenger flow statistics at the stations along a specific route. It relies heavily on a priori knowledge of the route as a whole: where and when passenger traffic is more concentrated and what extraneous factors may distinguish one station from the others at certain times. The selection or sampling of cells in the time period-station matrix is then randomly made according to the weights assigned to each cell based on such knowledge. Special emphasis should be made, during the execution phase of the survey, on the adherence to the survey schedule and counting method (e.g., systematically rotating the selection of doors when counting the entire car is infeasible). When the survey data are ready for analysis, it may be appropriate to incorporate a time ${ }_{I} x s^{\text {station }}{ }_{J}$ variable to account for the interaction between time period I and station J. The ideal situation is one when time and resources allow for the selection of all the cells at least twice. Then a regular two-way replicated model of the Analysis of Variance can be set up to estimate l) the time ${ }_{I}$ effect, 2) the station J_{J} effect, and 3) time $I_{I} x^{\text {station }}{ }_{J}$ interaction effect, if any. This, in our present case, for the 13 underground stations and 25 time periods, requires a sample of 650 cells. The sample size for our 1978 underground stations was about $1 / 6$ of the requirement of the "ideal model." In terms of the scope of the present effort, namely, the inbound and outbound, boarding and deboarding daily passenger profiles for each of the stations on the route, and in light of the intrinsic variable nature of passengers' travelling behavior, this study has accomplished what
it has set out to do. It develops a survey technique and estimation methodology to estimate route, station and time specific passenger flow profiles within the constraints of the precision and economic requirements.

[^0]: 16. Abstoct

 The work documented in this report represents part of an endeavor by the Urban Mass Transportation Administration to develop improvements in management techniques to operate local transit systems more efficiently and economically. In particular, the ability to accurately ascertain route specific passenger flows or passenger demands has become essential for adequate resource allocation and scheduling of transit runs. This raises the requirement to develop an optimal survey procedure for the estimation of passenger profiles/distributions along the route. In the survey plan and methodology, to be adopted and utilized by the local transit properties, the procedure should aim for maximum precision and minimum cost.

 This report presents the results and description of a methodology to collect boarding and deboarding passenger data on the Riverside Line of the Massachusetts Bay Transit Authority and to estimate for each station along the route an average passenger flow profile by half-hourly time periods. Such profiles can then be fed into a scheduling model which simulates and accommodates passenger congestion at various points in time It is a culmination of several small-scale passenger surveys and a statistical model employing indicator variables and the survey data to estimate the station and time factors for the derivation of average flow rates per minute. Validation of the model was carried out, which strengthened previous findings, but indicated a need for modification when the model was applied toward routes that link heterogenous geographical areas. The results prove that relatively inexpensive sampling techniques can result in acceptable estimates of ridership by route.

